Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

# Secondary interactions in the isomorphous compounds 2,6-bis(chloromethyl)pyridinium chloride and 2,6bis(bromomethyl)pyridinium bromide

# Virginia Lozano and Peter G. Jones\*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Correspondence e-mail: p.jones@tu-bs.de

Received 25 June 2004 Accepted 12 July 2004 Online 11 August 2004

The title compounds,  $C_7H_8Cl_2N^+\cdot Cl^-$  and  $C_7H_8Br_2N^+\cdot Br^-$ , are isomorphous. In the crystal packing, layers parallel to the *ac* plane are formed by a classical  $N^+ - H \cdots X^-$  hydrogen bond (X = halogen) and two  $X \cdots X$  contacts. A third  $X \cdots X$  contact links the layers, and a fourth, which is however very long, completes a ladder-like motif of halogen atoms. Hydrogen bonds of the form  $C - H \cdots X$  play at best a subordinate role in the packing.

# Comment

We are interested in secondary interactions (hydrogen bonds and halogen–halogen contacts) in halides of simple halogenated derivatives of anilines (Gray & Jones, 2002, and references therein) and pyridines [halopyridines (Freytag & Jones, 2001, and references therein) and halomethylpyridines (Jones & Vancea, 2003, and references therein)]. We report here the structures of the isomorphous pair of compounds 2,6-bis-(chloromethyl)pyridinium chloride, (I), and 2,6-bis(bromomethyl)pyridinium bromide, (II). It is common for such pairs to be isomorphous, *e.g.* 4-chloropyridinium chloride and its bromine analogue (Freytag *et al.*, 1999).



The asymmetric units of (I) and (II) are shown in Figs. 1 and 2, respectively. Bond lengths and angles may be regarded as normal, *e.g.* the widened angles at the ring N atom (Tables 1 and 3). The rings are essentially planar [r.m.s. deviations of 0.006 Å for (I) and (II)], with the substituent C atoms lying slightly outside the plane [in (I): C7 -0.105 (3) Å and C8 0.065 (2) Å; in (II): C7 -0.102 (4) Å and C8 0.063 (3) Å]. The



#### Figure 1

The asymmetric unit of (I) in the crystal. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The classical hydrogen bond is indicated as a broken line.





The asymmetric unit of (II) in the crystal. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The classical hydrogen bond is indicated as a broken line.

C-X vectors (X = halogen) of the halomethyl groups extend almost perpendicularly from, and to opposite sides of, the ring (for torsion angles see Tables 1 and 3).

Both compounds form the expected classical hydrogen bond from the N<sup>+</sup>-H group to the halide ion (Tables 2 and 4). Non-classical hydrogen-bond contacts of the form  $C-H\cdots X$ are observed, but are all either long (uncorrected  $H\cdots X >$ 2.9 Å) and/or markedly non-linear. Three independent halogen-halogen contacts in each structure provide more striking examples of secondary interactions (Table 5). The contact to the anion is, in each case, the shortest (because it is charge-assisted) and essentially linear, as would be expected from the concept of a small positive region in the extension of the C-Cl vector. The other two contacts, between cations, may be classified as type I ( $C-X\cdots X$  angles approximately equal) and type II (one  $C-X\cdots X$  angle *ca* 90° and the other *ca* 180°) according to the classification of Pedireddi *et al.* (1994).

The net effect of the classical hydrogen bond and the two shorter halogen-halogen interactions is to connect the resi-



#### Figure 3

A packing diagram for (I), viewed approximately parallel to the b axis, showing one layer at  $b \simeq \frac{1}{4}$ . Hydrogen bonds and Cl···Cl interactions are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.



#### Figure 4

A packing diagram for (I) as a projection parallel to the c axis. Cl···Cl interactions are indicated by dashed lines. Note that the chlorine parallelograms (e.g. at the left-hand cell margin), which are not an artefact of projection, can themselves be linked via Cl atoms (see text).

dues, via the glide-plane operators, to form layers parallel to the *ac* plane at  $y \simeq \frac{1}{4}, \frac{3}{4}$ . One such layer is shown in Fig. 3. The third and longest halogen-halogen interaction then links the layers, in the process forming halogen parallelograms (Fig. 4), with angles 117.54 (1) and 62.46 (1)° for (I), and 117.39 (1) and  $62.61 (1)^{\circ}$  for (II). It is noteworthy that the parallelograms are themselves linked into ladder-like tapes via further halogenhalogen contacts [3.8840 (6) Å for (I) and 3.9610 (4) Å for (II); symmetry code: x,  $\frac{1}{2} - y$ ,  $\frac{1}{2} + z$ ], which are much longer than the sum of the van der Waals radii but may still be structurally significant.

# **Experimental**

Compound (I) was obtained as a hygroscopic white solid by bubbling HCl gas through a solution of the corresponding pyridine (0.352 g,2 mmol) in dichloromethane (10 ml), and was recrystallized from dichloromethane-petroleum ether. Compound (II) was obtained in an analogous fashion, but is insoluble in dichloromethane and was recrystallized from ethanol-diisopropyl ether.

#### Crystal data

| $C_7H_8Cl_2N^+ \cdot Cl^-$      | Mo $K\alpha$ radiation                    |
|---------------------------------|-------------------------------------------|
| $M_r = 212.49$                  | Cell parameters from 4471                 |
| Monoclinic, $P2_1/c$            | reflections                               |
| a = 7.2167 (6)  Å               | $\theta = 2.8 - 30.5^{\circ}$             |
| b = 14.6054 (14)  Å             | $\mu = 0.97 \text{ mm}^{-1}$              |
| c = 8.4990 (8) Å                | T = 173 (2) K                             |
| $\beta = 98.716 \ (5)^{\circ}$  | Tapering prism, colourless                |
| $V = 885.47 (14) \text{ Å}^3$   | $0.38 \times 0.07 \times 0.07 \text{ mm}$ |
| Z = 4                           |                                           |
| $D_x = 1.594 \text{ Mg m}^{-3}$ |                                           |

# Data collection

Bruker SMART1000 CCD areadetector diffractometer  $\omega$  and  $\varphi$  scans Absorption correction: multi-scan (SADABS; Bruker, 1998)  $T_{\min} = 0.722, \ T_{\max} = 0.942$ 13 915 measured reflections

## Refinement

Refinement on  $F^2$  $R[F^2 > 2\sigma(F^2)] = 0.031$ wR(F<sup>2</sup>) = 0.081 S = 0.992590 reflections 104 parameters

colourless 0.07 mm 2590 independent reflections

1991 reflections with  $I > 2\sigma(I)$  $R_{\rm int}=0.038$  $\theta_{\rm max} = 30.0^{\circ}$  $h = -10 \rightarrow 10$  $k=-20\rightarrow 20$  $l = -11 \rightarrow 11$ 

H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0463P)^2]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$  $\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$ 

## Table 1

Selected geometric parameters (°) for (I).

| C2-N-C6      | 122.99 (13) |              |             |
|--------------|-------------|--------------|-------------|
| N-C2-C7-Cl1  | -98.77 (14) | N-C6-C8-Cl2  | -87.88 (14) |
| C3-C2-C7-Cl1 | 78.07 (17)  | C5-C6-C8-Cl2 | 89.62 (16)  |

#### Table 2

Hydrogen-bonding geometry (Å, °) for (I).

| $D - H \cdots A$                      | D-H                 | $H \cdot \cdot \cdot A$  | $D \cdots A$                      | $D - H \cdots A$             |
|---------------------------------------|---------------------|--------------------------|-----------------------------------|------------------------------|
| N-H1···Cl3                            | 0.95 (2)            | 2.10(2)                  | 3.0516 (13)                       | 174.4 (17)                   |
| $C7 - H7A \cdots Cl3^{i}$             | 0.99                | 2.99                     | 3.9632 (17)                       | 169                          |
| $C7 - H7B \cdot \cdot \cdot Cl3^{ii}$ | 0.99                | 2.94                     | 3.6572 (16)                       | 130                          |
| $C8 - H8A \cdots Cl3^{iii}$           | 0.99                | 2.95                     | 3.6085 (16)                       | 125                          |
| $C8 - H8B \cdot \cdot \cdot Cl3$      | 0.99                | 2.79                     | 3.5322 (17)                       | 133                          |
| $C3 - H3 \cdot \cdot \cdot Cl2^{iv}$  | 0.95                | 2.94                     | 3.7727 (16)                       | 147                          |
| $C7 - H7A \cdots Cl2^{iv}$            | 0.99                | 2.98                     | 3.6178 (16)                       | 123                          |
| $C8-H8A\cdots Cl1^{v}$                | 0.99                | 2.72                     | 3.4758 (17)                       | 134                          |
| Symmetry codes:                       | (i) $1 + x, y, z$ : | (ii) $1 - x_{i} - x_{i}$ | $y_{1} = -7$ ; (iii) $x_{1} = -7$ | $-v_{1}\frac{1}{z}+z$ ; (iv) |

 $1 + x, \frac{1}{2} - y, \frac{1}{2} + z; (v) \quad 1 - x, \frac{1}{2} + y, \frac{1}{2} - z.$ 

# Compound (II)

| Crystal data                    |                                           |
|---------------------------------|-------------------------------------------|
| $C_7H_8Br_2N^+\cdot Br^-$       | Mo <i>Kα</i> radiation                    |
| $M_r = 345.87$                  | Cell parameters from 4                    |
| Monoclinic, $P2_1/c$            | reflections                               |
| a = 7.4633 (6) Å                | $\theta = 2.7 - 30.5^{\circ}$             |
| b = 15.0136 (12) Å              | $\mu = 12.46 \text{ mm}^{-1}$             |
| c = 8.7377 (6) Å                | T = 133 (2) K                             |
| $\beta = 99.146 \ (4)^{\circ}$  | Plate, colourless                         |
| $V = 966.62 (13) \text{ Å}^3$   | $0.26 \times 0.18 \times 0.04 \text{ mm}$ |
| Z = 4                           |                                           |
| $D_x = 2.377 \text{ Mg m}^{-3}$ |                                           |

4337

Data collection

| Bruker SMART1000 CCD area-<br>detector diffractometer<br>$\omega$ and $\varphi$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 1998)<br>$T_{min} = 0.282, T_{max} = 0.608$<br>17 828 measured reflections | 2825 independent reflections<br>2503 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.043$<br>$\theta_{max} = 30.0^{\circ}$<br>$h = -10 \rightarrow 10$<br>$k = -20 \rightarrow 21$<br>$l = -12 \rightarrow 12$                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                 |
| Refinement on $F^2$<br>$R[F^2 > 2\sigma(F^2)] = 0.022$<br>$wR(F^2) = 0.057$<br>S = 1.02<br>2825 reflections<br>104 parameters<br>H atoms treated by a mixture of<br>independent and constrained<br>refinement                      | $\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0299P)^2 \\ &+ 0.6042P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.61 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.68 \text{ e } \text{\AA}^{-3} \end{split}$ |

#### Table 3

Selected geometric parameters (°) for (II).

| C2-N-C6      | 123.49 (18) |              |             |
|--------------|-------------|--------------|-------------|
| N-C2-C7-Br1  | -96.15 (19) | N-C6-C8-Br2  | -87.12 (19) |
| C3-C2-C7-Br1 | 81.1 (2)    | C5-C6-C8-Br2 | 90.7 (2)    |

#### Table 4

Hydrogen-bonding geometry (Å, °) for (II).

| $D - H \cdots A$                                                                                                                                  | D-H                                                      | $H \cdot \cdot \cdot A$                          | $D \cdots A$                                                                 | $D - H \cdots A$                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|
| $N-H1\cdots Br3$<br>$C7-H7A\cdots Br3^{i}$<br>$C7-H7B\cdots Br3^{ii}$<br>$C8-H8A\cdots Br3^{iii}$<br>$C8-H8B\cdots Br3$<br>$C3-H3\cdots Br2^{iv}$ | 0.88 (3)<br>0.99<br>0.99<br>0.99<br>0.99<br>0.99<br>0.95 | 2.37 (3)<br>3.08<br>3.07<br>2.99<br>2.92<br>3.10 | 3.2417 (17)<br>4.056 (2)<br>3.768 (2)<br>3.694 (2)<br>3.697 (2)<br>3.935 (2) | 174 (2)<br>167<br>129<br>129<br>134<br>147 |
| $C7 - H7A \cdots Br2^{v}$<br>$C8 - H8A \cdots Br1^{v}$                                                                                            | 0.99<br>0.99                                             | 3.09<br>2.86                                     | 3.753 (2)<br>3.599 (2)                                                       | 126<br>132                                 |

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, -y, -z; (iii)  $x, \frac{1}{2} - y, \frac{1}{2} + z$ ; (iv)  $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$ ; (v)  $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$ .

Crystals of compound (I) cracked badly at 133 K, presumably because of a phase transition, and were therefore measured at the slightly higher temperature of 173 K. The N-bound H atoms were

# **Table 5** Cl···Cl contacts for (I) and Br···Br contacts for (II) (Å, °).

| $C = X \cdots X = C^{\dagger}$         | $X \dots X$ | $C = X \cdots X$ | $X \cdots X = C$ |
|----------------------------------------|-------------|------------------|------------------|
|                                        | <i>A A</i>  | 0 / /            | <u> </u>         |
| $C8 - Cl2 \cdot \cdot \cdot Cl3^{vi}$  | 3.3085 (6)  | 173.02 (6)       |                  |
| $C7-Cl1\cdots Cl2^{iv}-C8^{iv}$        | 3.5695 (6)  | 77.01 (5)        | 88.82 (5)        |
| $C7 - Cl1 \cdots Cl2^{vii} - C8^{vii}$ | 3.5886 (6)  | 147.05 (5)       | 71.80 (5)        |
| C8-Br2···Br3 <sup>vi</sup>             | 3.3550 (4)  | 174.19 (6)       |                  |
| $C7-Br1\cdots Br2^{iv}-C8^{iv}$        | 3.7482 (4)  | 75.06 (7)        | 89.16 (6)        |
| $C7-Br1\cdots Br2^{vii}-C8^{vii}$      | 3.6959 (4)  | 149.72 (6)       | 71.68 (6)        |

† Final C atom not applicable for chloride and bromide acceptors. Symmetry codes: (iv)  $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$ ; (vi)  $x, \frac{1}{2} - y, z - \frac{1}{2}$ ; (vii)  $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$ .

refined freely. Other H atoms were introduced at geometrically calculated positions and refined using a riding model, with fixed C-H distances of 0.95 ( $sp^2$  C-H) or 0.99 Å (methylene H), and with  $U_{iso}(H) = 1.2U_{ea}(C)$ .

For both compounds, data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

The authors thank Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1577). Services for accessing these data are described at the back of the journal.

#### References

Bruker (1998). *SMART* (Version 5.0), *SAINT* (Version 4.0) and *SADABS* (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.

Freytag, M. & Jones, P. G. (2001). Z. Naturforsch. Teil B, 56, 889-896.

Freytag, M., Jones, P. G., Ahrens, B. & Fischer, A. K. (1999). New J. Chem. 23, 1137–1138.

Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 73-82.

Jones, P. G. & Vancea, F. (2003). CrystEngComm, 5, 303-304.

Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.