Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Secondary interactions in the isomorphous compounds 2,6-bis(chloromethyl)pyridinium chloride and 2,6bis(bromomethyl)pyridinium bromide

Virginia Lozano and Peter G. Jones*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany
Correspondence e-mail: p.jones@tu-bs.de

Received 25 June 2004
Accepted 12 July 2004
Online 11 August 2004
The title compounds, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$and $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$, are isomorphous. In the crystal packing, layers parallel to the ac plane are formed by a classical $\mathrm{N}^{+}-\mathrm{H} \cdots X^{-}$hydrogen bond ($X=$ halogen) and two $X \cdots X$ contacts. A third $X \cdots X$ contact links the layers, and a fourth, which is however very long, completes a ladder-like motif of halogen atoms. Hydrogen bonds of the form $\mathrm{C}-\mathrm{H} \cdots X$ play at best a subordinate role in the packing.

Comment

We are interested in secondary interactions (hydrogen bonds and halogen-halogen contacts) in halides of simple halogenated derivatives of anilines (Gray \& Jones, 2002, and references therein) and pyridines [halopyridines (Freytag \& Jones, 2001, and references therein) and halomethylpyridines (Jones \& Vancea, 2003, and references therein)]. We report here the structures of the isomorphous pair of compounds 2,6-bis(chloromethyl)pyridinium chloride, (I), and 2,6-bis(bromomethyl)pyridinium bromide, (II). It is common for such pairs to be isomorphous, e.g. 4-chloropyridinium chloride and its bromine analogue (Freytag et al., 1999).

The asymmetric units of (I) and (II) are shown in Figs. 1 and 2 , respectively. Bond lengths and angles may be regarded as normal, e.g. the widened angles at the ring N atom (Tables 1 and 3). The rings are essentially planar [r.m.s. deviations of $0.006 \AA$ for (I) and (II)], with the substituent C atoms lying slightly outside the plane [in (I): C7 -0.105 (3) \AA and C8 0.065 (2) \AA; in (II): C7 -0.102 (4) \AA and $C 80.063$ (3) $\AA]$. The

Figure 1
The asymmetric unit of (I) in the crystal. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The classical hydrogen bond is indicated as a broken line.

Figure 2
The asymmetric unit of (II) in the crystal. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The classical hydrogen bond is indicated as a broken line.
$\mathrm{C}-X$ vectors ($X=$ halogen) of the halomethyl groups extend almost perpendicularly from, and to opposite sides of, the ring (for torsion angles see Tables 1 and 3).

Both compounds form the expected classical hydrogen bond from the $\mathrm{N}^{+}-\mathrm{H}$ group to the halide ion (Tables 2 and 4). Non-classical hydrogen-bond contacts of the form $\mathrm{C}-\mathrm{H} \cdots X$ are observed, but are all either long (uncorrected $\mathrm{H} \cdots X>$ $2.9 \AA$) and/or markedly non-linear. Three independent halogen-halogen contacts in each structure provide more striking examples of secondary interactions (Table 5). The contact to the anion is, in each case, the shortest (because it is charge-assisted) and essentially linear, as would be expected from the concept of a small positive region in the extension of the $\mathrm{C}-\mathrm{Cl}$ vector. The other two contacts, between cations, may be classified as type I ($\mathrm{C}-X \cdots X$ angles approximately equal) and type II (one $\mathrm{C}-X \cdots X$ angle $c a 90^{\circ}$ and the other ca 180°) according to the classification of Pedireddi et al. (1994).

The net effect of the classical hydrogen bond and the two shorter halogen-halogen interactions is to connect the resi-

Figure 3
A packing diagram for (I), viewed approximately parallel to the b axis, showing one layer at $b \simeq \frac{1}{4}$. Hydrogen bonds and $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Figure 4
A packing diagram for (I) as a projection parallel to the c axis. $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions are indicated by dashed lines. Note that the chlorine parallelograms (e.g. at the left-hand cell margin), which are not an artefact of projection, can themselves be linked via Cl atoms (see text).
dues, via the glide-plane operators, to form layers parallel to the $a c$ plane at $y \simeq \frac{1}{4}, \frac{3}{4}$. One such layer is shown in Fig. 3. The third and longest halogen-halogen interaction then links the layers, in the process forming halogen parallelograms (Fig. 4), with angles 117.54 (1) and 62.46 (1) ${ }^{\circ}$ for (I), and 117.39 (1) and $62.61(1)^{\circ}$ for (II). It is noteworthy that the parallelograms are themselves linked into ladder-like tapes via further halogenhalogen contacts [3.8840 (6) \AA for (I) and 3.9610 (4) \AA for (II); symmetry code: $x, \frac{1}{2}-y, \frac{1}{2}+z$], which are much longer than the sum of the van der Waals radii but may still be structurally significant.

Experimental

Compound (I) was obtained as a hygroscopic white solid by bubbling HCl gas through a solution of the corresponding pyridine $(0.352 \mathrm{~g}$, 2 mmol) in dichloromethane (10 ml), and was recrystallized from dichloromethane-petroleum ether. Compound (II) was obtained in an analogous fashion, but is insoluble in dichloromethane and was recrystallized from ethanol-diisopropyl ether.

Compound (I)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=212.49$
Monoclinic, $P 2_{1} / c$
$a=7.2167$ (6) \AA
$b=14.6054(14) \AA$
$c=8.4990(8) \AA$
$\beta=98.716(5)^{\circ}$
$V=885.47(14) \AA^{3}$
$Z=4$
$D_{x}=1.594 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART1000 CCD area-
detector diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.722, T_{\text {max }}=0.942$
13915 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.081$
$S=0.99$
2590 reflections
104 parameters

Selected geometric parameters (${ }^{\circ}$) for (I).

$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 6$	$122.99(13)$		
$\mathrm{N}-\mathrm{C} 2-\mathrm{C} 7-\mathrm{Cl} 1$	$-98.77(14)$	$\mathrm{N}-\mathrm{C} 6-\mathrm{C} 8-\mathrm{Cl} 2$	$-87.88(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{Cl} 1$	$78.07(17)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8-\mathrm{Cl} 2$	$89.62(16)$

Table 2
Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 \cdots \mathrm{Cl} 3$	$0.95(2)$	$2.10(2)$	$3.0516(13)$	$174.4(17)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl} 3^{\mathrm{i}}$	0.99	2.99	$3.9632(17)$	169
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{Cl} 3^{\text {ii }}$	0.99	2.94	$3.6572(16)$	130
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Cl} 3^{\text {iii }}$	0.99	2.95	$3.6085(16)$	125
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Cl} 3$	0.99	2.79	$3.5322(17)$	133
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 2^{\mathrm{iv}}$	0.95	2.94	$3.7727(16)$	147
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl}^{\mathrm{iv}}$	0.99	2.98	$3.6178(16)$	123
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Cl}^{\mathrm{v}}$	0.99	2.72	$3.4758(17)$	134

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x,-y,-z ;$ (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z ; \quad$ (iv)
$1+x, \frac{1}{2}-y, \frac{1}{2}+z ;$ (v) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Compound (II)

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$	Mo $\mathrm{K} \alpha$ radiation
$M_{r}=345.87$	Cell parameters from 4337
Monoclinic, $P 2_{1} / c$	reflections
$a=7.4633(6) \AA$	$\theta=2.7-30.5^{\circ}$
$b=15.0136(12) \AA$	$\mu=12.46 \mathrm{~mm}^{-1}$
$c=8.7377(6) \AA$	$T=133(2) \mathrm{K}$
$\beta=99.146(4)^{\circ}$	Plate, colourless
$V=966.62(13) \AA^{3}$	$0.26 \times 0.18 \times 0.04 \mathrm{~mm}$
$Z=4$	
$D_{x}=2.377 \mathrm{Mg} \mathrm{m}^{-3}$	

Mo $K \alpha$ radiation
Cell parameters from 4471 reflections
$\theta=2.8-30.5^{\circ}$
$\mu=0.97 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Tapering prism, colourless $0.38 \times 0.07 \times 0.07 \mathrm{~mm}$

$$
\begin{aligned}
& 2590 \text { independent reflections } \\
& 1991 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.038 \\
& \theta_{\max }=30.0^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=-20 \rightarrow 20 \\
& l=-11 \rightarrow 11
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0463 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.53 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1

Data collection

Bruker SMART1000 CCD area-
detector diffractometer
ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 1998)
$T_{\text {min }}=0.282, T_{\text {max }}=0.608$
17828 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.057$
$S=1.02$
2825 reflections
104 parameters
H atoms treated by a mixture of independent and constrained refinement

2825 independent reflections 2503 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-20 \rightarrow 21$
$l=-12 \rightarrow 12$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0299 P)^{2}\right.
$$

$$
+0.6042 P]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.61 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.68 \mathrm{e}^{\AA^{-3}}$

Table 3
Selected geometric parameters $\left({ }^{\circ}\right)$ for (II).

$\mathrm{C} 2-\mathrm{N}-\mathrm{C} 6$	$123.49(18)$		
$\mathrm{N}-\mathrm{C} 2-\mathrm{C} 7-\mathrm{Br} 1$	$-96.15(19)$	$\mathrm{N}-\mathrm{C} 6-\mathrm{C} 8-\mathrm{Br} 2$	$-87.12(19)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{Br} 1$	$81.1(2)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8-\mathrm{Br} 2$	$90.7(2)$

Table 4
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 \cdots \mathrm{Br} 3$	$0.88(3)$	$2.37(3)$	$3.2417(17)$	$174(2)$
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.99	3.08	$4.056(2)$	167
$\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.99	3.07	$3.768(2)$	129
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Br} 3^{\mathrm{iii}}$	0.99	2.99	$3.694(2)$	129
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Br} 3$	0.99	2.92	$3.677(2)$	134
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Br}^{\mathrm{iv}}$	0.95	3.10	$3.935(2)$	147
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Br}^{\mathrm{iv}}$	0.99	3.09	$3.753(2)$	126
$\mathrm{C} 8-\mathrm{H} 8 A \cdots \mathrm{Br}^{\mathrm{v}}$	0.99	2.86	$3.599(2)$	132

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x,-y,-z$; (iii) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $1+x$, $\frac{1}{2}-y, \frac{1}{2}+z$; (v) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.

Crystals of compound (I) cracked badly at 133 K , presumably because of a phase transition, and were therefore measured at the slightly higher temperature of 173 K . The N-bound H atoms were

Table 5
$\mathrm{Cl} \cdots \mathrm{Cl}$ contacts for (I) and $\mathrm{Br} \cdots \mathrm{Br}$ contacts for $(\mathrm{II})\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C}-X \cdots X-\mathrm{C} \dagger$	$X \cdots X$	$\mathrm{C}-X \cdots X$	$X \cdots X-\mathrm{C}$
$\mathrm{C} 8-\mathrm{Cl} 2 \cdots \mathrm{Cl}^{\text {vi }}$	$3.3085(6)$	$173.02(6)$	
$\mathrm{C} 7-\mathrm{Cl} 1 \cdots \mathrm{Cl}^{\text {iv }}-\mathrm{C}^{\text {iv }}$	$3.5695(6)$	$77.01(5)$	$88.82(5)$
$\mathrm{C} 7-\mathrm{Cl} 1 \cdots \mathrm{Cl}^{\text {vii }}-\mathrm{C} 8^{\text {vii }}$	$3.5886(6)$	$147.05(5)$	$71.80(5)$
$\mathrm{C} 8-\mathrm{Br} 2 \cdots \mathrm{Br}^{\text {vi }}$	$3.3550(4)$	$174.19(6)$	
$\mathrm{C} 7-\mathrm{Br} 1 \cdots \mathrm{Br}^{\text {iv }}-\mathrm{C}^{\text {iv }}$	$3.7482(4)$	$75.06(7)$	$89.16(6)$
$\mathrm{C} 7-\mathrm{Br} 1 \cdots \mathrm{Br}^{\text {vii }}-\mathrm{C}^{\text {vii }}$	$3.6959(4)$	$149.72(6)$	$71.68(6)$

\dagger Final C atom not applicable for chloride and bromide acceptors. Symmetry codes: (iv) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (vi) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (vii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.
refined freely. Other H atoms were introduced at geometrically calculated positions and refined using a riding model, with fixed $\mathrm{C}-$ H distances of $0.95\left(s p^{2} \mathrm{C}-\mathrm{H}\right)$ or $0.99 \AA$ (methylene H), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

The authors thank Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1577). Services for accessing these data are described at the back of the journal.

References

Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Freytag, M. \& Jones, P. G. (2001). Z. Naturforsch. Teil B, 56, 889-896.
Freytag, M., Jones, P. G., Ahrens, B. \& Fischer, A. K. (1999). New J. Chem. 23, 1137-1138.
Gray, L. \& Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 73-82.
Jones, P. G. \& Vancea, F. (2003). CrystEngComm, 5, 303-304.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

